Portland State University, USA
University of Louisville, USA
* Corresponding author
Nagoya University, JAPAN

Article Main Content

This review discusses on current methodologies and trends in modeling fluidic mass transport phenomena in micro and nano scale biomedical devices. We have presented the governing equations for species transport in micro and nano scales and provided analytical as well as computational approaches that can aid in obtaining solutions for complex flow problems. We have also reviewed novel methodologies that modern research community utilized for simulating species transport in micro and nano biomedical sensing devices.

References

  1. Sheng A. et al. Micro/nanodevices for assessment and treatment in stomatology and ophthalmology. Microsyst Nanoeng, Dec. 2021;7(1):11. doi: 10.1038/s41378-021-00238-1.
     Google Scholar
  2. Gajasinghe R., Jones M., Ince T. A., and Tigli O. Label and Immobilization Free Detection and Differentiation of Tumor Cells. IEEE Sensors J., May. 2018;18(9):3486–3493. doi: 10.1109/JSEN.2018.2813975.
     Google Scholar
  3. Rojas J. P., Singh D., Inayat S. B., Sevilla G. A. T., Fahad H. M., and Hussain M. M. Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications. ECS J. Solid State Sci. Technol., 2017;6(3):N3036–N3044. doi: 10.1149/2.0081703jss.
     Google Scholar
  4. Gajasinghe R. W. R. L. et al. Experimental study of PDMS bonding to various substrates for monolithic microfluidic applications. J. Micromech. Microeng., Jul. 2014;24(7):075010. doi: 10.1088/0960-1317/24/7/075010.
     Google Scholar
  5. Farsani H. Y., Wutz J., DeVincentis B., J. A. Thomas J. A., and Motevalian S. P. Modeling mass transfer in stirred microbioreactors. Chemical Engineering Science, Feb. 2022;248:117146. doi: 10.1016/j.ces.2021.117146.
     Google Scholar
  6. Chakraborty S., Microfluidcs and Microscale Transport Processes, 2012; 1st ed. CRC Press.
     Google Scholar
  7. Weerasekera N., Cao S., and Perera L. Functional Property Evaluation of Crystalline Materials using Density Functional Theory: A Review. EJPHYSICS, Jan. 2022;4(1):19–26. doi: 10.24018/ejphysics.2022.4.1.142.
     Google Scholar
  8. Harris C., Despa M., and Kelly K. Design and fabrication of a cross flow micro heat exchanger. J. Microelectromech. Syst., Dec. 2000;9(4):502–508. doi: 10.1109/84.896772.
     Google Scholar
  9. Weerasekera N. D., Abdulla A. I., Shingdon D. R., and Cheruiyot K. Feasibility Study of Parabolic Trough Collectors for Residential Water Heating. SSRG-IJME, Dec. 2019;6(12):1–6. doi: 10.14445/23488360/IJME-V6I12P101.
     Google Scholar
  10. Paprotny I., Doering F., Solomon P. A., White R. M., and Gundel L.A. Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results. Sensors and Actuators A: Physical, Oct. 2013;201:506–516. doi: 10.1016/j.sna.2012.12.026.
     Google Scholar
  11. Lu G., Wang X. D., and Duan Y. Y. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids. Advances in Colloid and Interface Science, Oct. 2016;236:43–62. doi: 10.1016/j.cis.2016.07.004.
     Google Scholar
  12. Kraegeloh A., Suarez-Merino B., Sluijters T., and Micheletti C. Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach. Nanomaterials, Apr. 2018;8(4):239. doi: 10.3390/nano8040239.
     Google Scholar
  13. Weerasekera N., and Abdulla A.I. Zenner-Frank Phase Field Kinetics for Cu Precipitate Depletion in Sn-Ag-Cu Solder Joints. IJSER, 2019;10(11):1210–1216. doi: 10.13140/RG.2.2.22463.38567.
     Google Scholar
  14. Yildirim B., Senveli S. U., Gajasinghe R. W. R. L., and Tigli O. Surface Acoustic Wave Viscosity Sensor with Integrated Microfluidics on a PCB Platform. IEEE Sensors J., Mar. 2018;18(6):2305–2312. doi: 10.1109/JSEN.2018.2797546.
     Google Scholar
  15. Gockel J., Beuth J., and Taminger K. Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V. Additive Manufacturing, Oct. 2014;1(4):119–126. doi: 10.1016/j.addma.2014.09.004.
     Google Scholar
  16. Psaltis D., Quake S. R., and Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, Jul. 2006;442(7101):381–386. doi: 10.1038/nature05060.
     Google Scholar
  17. Terray A., Oakey J., and Marr D. W. M. Microfluidic Control Using Colloidal Devices. Science, Jun. 2002;296,(5574):1841–1844. doi: 10.1126/science.1072133.
     Google Scholar
  18. Weerasekera N. D., and Laguerre A. Coupled Continuum Advection-Diffusion Model for Simulating Parallel Flow Induced Mass Transport in Porous Membranes. International Journal of Science and Research, 8(12):694–700, 2019. doi: 10.21275/ART20203395.
     Google Scholar
  19. Patricia D. Nanoengineering- Global Approaches to Health and Safety Issues. 2015. Elsevier, [Online]. Available: https://doi.org/10.1016/C2011-0-09095-6.
     Google Scholar
  20. Weerasekera N. D., and Cao S., Multifaceted Convergence Study for Evaluating Gas Diffusion Parameters of Polymeric Membranes. IJEAS, Nov. 2019;6(11). doi: 10.31873/IJEAS.6.11.21.
     Google Scholar
  21. Byron B., Stewart W., and Lightfoot E. Transport Phenomena. 2002. John Wiley and Sons, Inc.
     Google Scholar
  22. Mirza I. A., Akram M. S., Shah N. A., Imtiaz W., and Chung J. D. Analytical solutions to the advection-diffusion equation with Atangana-Baleanu time-fractional derivative and a concentrated loading. Alexandria Engineering Journal, Feb. 2021;60(1):1199–1208. doi: 10.1016/j.aej.2020.10.043.
     Google Scholar
  23. Akbar T., and Zia Q. M. Z. Some exact solutions of two-dimensional Navier–Stokes equations by generalizing the local vorticity. Advances in Mechanical Engineering, Apr. 2019;11(4):168781401983189. doi: 10.1177/1687814019831893.
     Google Scholar
  24. Dixon A. G., and Medeiros N. J. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects. Fluids, Oct. 2017;2(4):56. doi: 10.3390/fluids2040056.
     Google Scholar
  25. Safaei M. R. et al. Investigation of Micro- and Nanosized Particle Erosion in a 90° Pipe Bend Using a Two-Phase Discrete Phase Model. The Scientific World Journal, 2014:1–12. doi: 10.1155/2014/740578.
     Google Scholar
  26. Zahari N. M. et al. Introduction of discrete phase model (DPM) in fluid flow: A review. Ho Chi Minh, Vietnam, 2018:020234. doi: 10.1063/1.5066875.
     Google Scholar
  27. Weerasekera N., Cao S., and Shingdon D. R. Phase Field Modeling of Ghost Diffusion in Sn-Ag-Cu Solder Joints. European Journal of Applied Physics, 2022;4(2):28–34. doi: http://dx.doi.org/10.24018/ejphysics.2022.4.2.163.
     Google Scholar
  28. Ganapathy H., Shooshtari A., Choo K., Dessiatoun S., Alshehhi M., and Ohadi M. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels. International Journal of Heat and Mass Transfer, Oct. 2013;65:62–72. doi: 10.1016/j.ijheatmasstransfer.2013.05.044.
     Google Scholar
  29. Gerlach D., Tomar G., Biswas G., and Durst F. Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows. International Journal of Heat and Mass Transfer, Feb. 2006;49(3–4):740–754. doi: 10.1016/j.ijheatmasstransfer.2005.07.045.
     Google Scholar
  30. Yang Y. -T., and Hwang M.-L. Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media. International Journal of Heat and Mass Transfer, Jun. 2009;52(13–14):2956–2965. doi:10.1016/j.ijheatmasstransfer.2009.02.024.
     Google Scholar
  31. McKelvey K., Brunet Cabré M., and Esmeraldo Paiva A. Continuum simulations for microscale 3D batteries. Current Opinion in Electrochemistry, Jun. 2020;21:76–83. doi: 10.1016/j.coelec.2020.01.008.
     Google Scholar
  32. Chevalier S. Semianalytical modeling of the mass transfer in microfluidic electrochemical chips. Phys. Rev. E, Sep. 2021;104(3):035110. , doi: 10.1103/PhysRevE.104.035110.
     Google Scholar
  33. Chung Y.-C., T. Cho K., and Chun B. C. Flexible cross-linking by both pentaerythritol and polyethyleneglycol spacer and its impact on the mechanical properties and the shape memory effects of polyurethane. J. Appl. Polym. Sci., Jun. 2009;112(5). doi: 10.1002/app.29538.
     Google Scholar
  34. Burke K., Car R., and Gebauer R. Density Functional Theory of the Electrical Conductivity of Molecular Devices. Phys. Rev. Lett., Apr. 2005;94(14). doi: 10.1103/PhysRevLett.94.146803.
     Google Scholar
  35. Aprea C., Greco A., Maiorino A., and Masselli C. The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler. Energy, Jan. 2020;190:116404. doi: 10.1016/j.energy.2019.116404.
     Google Scholar
  36. Vachaparambil K. J., and Einarsrud K. E. Comparison of Surface Tension Models for the Volume of Fluid Method. Processes, Aug. 2019;7(8):542. doi: 10.3390/pr7080542.
     Google Scholar
  37. Zarringhalam M., Ahmadi-Danesh-Ashtiani H., Toghraie D., and Fazaeli R. The effects of suspending Copper nanoparticles into Argon base fluid inside a microchannel under boiling flow condition by using of molecular dynamic simulation. Journal of Molecular Liquids, Nov. 2019;293:111474. doi: 10.1016/j.molliq.2019.111474.
     Google Scholar
  38. Zhang J. Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid, Jan. 2011;10(1):1–28. doi: 10.1007/s10404-010-0624-1.
     Google Scholar
  39. Kumar C. et al. Modeling of mass transfer enhancement in a magnetofluidic micromixer. Physics of Fluids, Jun. 2019;31(6):063603. doi: 10.1063/1.5093498.
     Google Scholar
  40. Ballesteros Hernando J., Ramos Gómez M., and Díaz Lantada A. Modeling Living Cells Within Microfluidic Systems Using Cellular Automata Models. Sci Rep, Dec. 2019;9(1):14886. doi: 10.1038/s41598-019-51494-1.
     Google Scholar